
International Journal of Heat and Mass Transfer 47 (2004) 4293–4300

www.elsevier.com/locate/ijhmt
An analytical derivation of source term dependent,
2-D ‘generalized Poisson conduction shape factors’

Devashish Shrivastava, Robert B. Roemer *

Department of Mechanical Engineering, University of Utah, Salt Lake City, UT 84102, USA

Received 30 September 2003; received in revised form 26 April 2004

Available online 2 July 2004

Abstract

This paper presents derivations for new ‘‘generalized Poisson conduction shape factors’’ (GPCSFs), that are more

general than the commonly used conduction shape factors since they include the effects of both source terms and

arbitrary, spatially variable boundary temperatures. The GPCSFs are derived for a single, circular vessel eccentrically

imbedded in a uniformly heated, homogeneous, circular tissue matrix. Two GPCSF formulations are presented, as

based on the difference between the average vessel wall temperature and; (1) the average tissue boundary temperature

(Stb), or (2) the average tissue matrix temperature (Stm). The results show first, that the presence of a source term

significantly affects the GPCSFs for all vessel radii and eccentricities. Second, unlike standard shape factors with

uniform boundary temperatures, the GPCSFs are a function of both the magnitude and distribution of the boundary

temperatures; however, these effects are significant only for large vessel radii and eccentricities. Finally, when the vessel

cools the tissue, the average tissue matrix temperature GPCSFs are much less sensitive to the source term than are the

tissue boundary temperature GPCSFs.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

To accurately estimate heat transfer rates between

tissues and vessels in biological/medical applications, it

is important to quantify convective and conductive

resistances accurately. Since the conductive resistance

dominates or is at least comparable to the convective

resistance in tissue–vessel heat transfer [e.g., 1], previous

investigators have focused on developing improved

conduction shape factors [e.g., 1–6] by using several

different approximations and formulations. First, in

many applications strong source terms are present in the

tissue, surprisingly, no expressions have been derived for

the related shape factors. Thus, previous investigators

have approximated them using shape factors derived
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using Laplace’s equation [e.g., 2,4]. More particularly,

the development of new, more robust equations to pre-

dict tissue temperatures, e.g., the tissue convective en-

ergy balance equation, TCEBE [7], requires knowledge

of shape factors for heated tissues, thus specifically

motivating the current study.

Second, (again surprisingly) all previous investigators

have used only uniform boundary conditions [3,5,6, 8–

12] to derive shape factors. However, variable boundary

conditions will clearly be present on vessel surfaces due

to the non-uniform temperature distributions in un-

heated/heated tissues. Thus, it is important to derive

GPCSFs using angularly varying boundary conditions

to determine the effect of these variables.

Third, there are several different ways in which con-

duction ‘‘shape factors’’ have been defined in the bio-

thermal literature. Some researchers have based them on

the difference between the vessel wall and tissue

boundary temperatures [e.g., 1–3]. Alternatively, Baish

et al. [4] (implicitly) defined them based on the difference

between the vessel wall temperature and the volume
ed.
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Nomenclature

avw dimensional distance between the centers of

the tissue and the vessel

fvw an arbitrary temperature function at the

boundary of the vessel

ftb an arbitrary temperature function at the

outer boundary of the tissue

g000 uniform source term in the tissue per unit

volume

k conductivity of the tissue

r radial distance

rvw radius of the vessel

rtb outer radius of the cylinder

Stb generalized Poisson conduction shape factor

defined based on the average tissue bound-

ary temperature

Stm generalized Poisson conduction shape factor

defined based on the area average tissue

matrix temperature

ttb;1 average temperature at the outer tissue

boundary

ttb;2 magnitude of the temperature fluctuation

imposed on the tissue outer wall

tvw;1 average temperature at the vessel wall

tvw;2 magnitude of the temperature fluctuation

imposed on the vessel wall

Non-dimensional parameters

Avw distance between the center of the tissue and

the center of the vessel, avw=rtb
a11 constant, Avw � Rvw

a21 constant, Avw þ Rvw

Ftb temperature at the tissue boundary,

ðftb � tvw;1Þ=ðttb;1 � tvw;1Þ
Fvw temperature at the vessel wall, ðfvw � tvw;1Þ=

ðttb;1 � tvw;1Þ
ntb constant that determines the number of

peaks in the temperature fluctuation on the

tissue boundary

nvw constant that determines the number of

peaks in the temperature fluctuation on the

vessel wall

P power deposition, g000r2tbk=ðttb;1 � tvw;1Þ
R radius, r=rtb
R1 distance of the vessel wall perimeter from

the center of the tissue matrix, fðAvw þ
Rvw cos hÞ2 þ ðRvw sin hÞ2g1=2

R�
1 radius in conformally mapped space,

ðU 2
1 þ V 2

1 Þ
1=2

Rm radius of the vessel in conformally mapped

space, f1� a11a21 � ðð1� a211Þð1� a221ÞÞ
1=2g=

ða21 � a11Þ
Rvw radius of the vessel, rvw=rtb
T temperature, ðt � tvw;1Þ=ðttb;1 � tvw;1Þ
T1 temperature, T þ PR2=4
Tavg area average non-dimensional temperature

of the tissue matrix, 1
A

R
A T dA

U1; V1 Cartesian coordinate system in the confor-

mal plane

w1 bilinear transformation, U1 þ iV1 ¼ ðxþ iy�
k1Þ=ð1� k1ðxþ iyÞÞ

x; y original Cartesian coordinate system

Greek symbols

a1 angular position measured from the center

of the vessel in the transformed coordinate

system, tan�1ðV1=U1Þ
k1 constant, f1þa11a21�ðð1�a211Þð1�a221ÞÞ

1=2g=
ða21 þ a11Þ

/tb phase angle of the temperature fluctuation

at the tissue boundary

/vw phase angle of the temperature fluctuation

at the vessel wall

w angular position measured from the center

of the disk

h angular position measured from the center of

the vessel in the original coordinate system
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averaged tissue temperature. Finally, others have de-

fined such factors based on the difference between the

mixed mean blood temperature and (1) the temperature

outside the boundary [e.g., 5,6,8] or (2) on the tissue

boundary [e.g., 9].

In summary, a derivation for shape factors that

are valid for general vessel wall and tissue boundary

conditions is needed for both heated/unheated tissues.

The current derivation derives such expressions for a

single vessel in a finite tissue matrix. Derivations for

multiple vessels will be presented in future publications

[13].
2. Mathematical model

2.1. Formulation and solution

To derive the new GPCSFs we solve the 2-D energy

equation with a uniformly distributed source term for a

single circular vessel eccentrically imbedded in a circular

tissue matrix. General Dirichlet boundary conditions are

utilized. A uniform source distribution is assumed: (a)

for simplicity, and (b) since the source term distribution

for many heating systems whose power deposition pat-

terns vary negligibly over distances of the magnitude of
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the tissue boundary radius can be approximated as being

uniform over short distances. A single vessel is used

since it has been shown by Xu et al. [14] that if the tissue

matrix area is on the order of 1 mm2 the vessel number

density ranges from 1 to 3 vessels/mm2 in a pig kidney.

The non-dimensional energy equation is presented in

Eq. (1) after the change of variables from T to T1 to

make this equation a Laplace equation for a homoge-

neous tissue matrix with an arbitrarily located vessel.

Boundary conditions are given in Eqs. (2) and (3)

(Fig. 1).

1

R
d

dR
R
dT1
dR

� �
þ 1

R2

d2T1
dw2

¼ 0 ð1Þ

T1jR1
¼ FvwðhÞ þ PR1=4 ð2Þ

T1j1 ¼ FtbðwÞ þ P=4 ð3Þ

A bilinear transformation (w1) [15] is applied to make

the tissue and vessel cylinders concentric, giving,

1

R�
1

d

dR�
1

R�
1

dT1
dR�

1

� �
þ 1

ðR�
1Þ

2

d2T1
da21

¼ 0 ð4Þ

with,

T1j1 ¼ FtbðwðU1; V1ÞÞ þ P=4 ð5Þ

T1jRm
¼ FvwðhðU1; V1ÞÞ þ PR1ðU1; V1Þ2=4 ð6Þ

The general solution to Eq. (4) is [16],

T1 ¼ A01 þ A0
01 lnðR�

1Þ þ
X1
n¼1

fAn1ðR�
1Þ

n þ A0
n1ðR�

1Þ
�ng

� sinðna1Þ þ
X1
n¼1

fBn1ðR�
1Þ

n þ B0
n1ðR�

1Þ
�ng cosðna1Þ

ð7Þ
Rtb = 1

P

y

R1

ψ

Tissue matrix

Fig. 1. Schematic of an arbitrarily loca
Using Eqs. (5) and (6) and orthogonality gives,

A01 ¼
1

2p

Z 2p

0

FtbðwðU1; V1ÞÞda1 þ P=4 ð8Þ

A0
01 ¼

1

logðRmÞ
1

2p

Z 2p

0

FvwðhðU1; V1ÞÞ
 "

þ PR1ðU1; V1Þ2

4

!
da1 � A0

#
ð9Þ

An1 þ A0
n1 ¼ SAn1

¼ 1

p

Z 2p

0

FtbðwðU1; V1ÞÞ sinðna1Þda1 ð10Þ

Bn1 þ B0
n1 ¼ SBn1

¼ 1

p

Z 2p

0

FtbðwðU1; V1ÞÞ cosðna1Þda1 ð11Þ

An1 ¼
1

ðRn
m � R�n

m Þ
1

p

Z 2p

0

FvwðhðU1; V1ÞÞ
 "

þ PR1ðU1; V1Þ2

4

!
sinðna1Þda1 � SAn1R

�n
m

#

ð12Þ

Bn1 ¼
1

ðRn
m �R�n

m Þ
1

p

Z 2p

0

FvwðhðU1;V1ÞÞ
 "

þ PR1ðU1;V1Þ2

4

!

�cosðna1Þda1 � SBn1R
�n
m

#
ð13Þ

Eqs. (7)–(13) describe the temperature field in the tissue.

This solution is valid for any continuous vessel wall and
x

Ftb

Fvw

Rvw

Avw

θ

ted vessel inside a tissue matrix.
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tissue boundary temperature fields that can be repre-

sented by a Fourier series, and reduces to the standard

solutions under proper conditions [13].

The two GPCSFs are now defined. First, Eq. (14)

defines the GPCSF Stb as the heat transfer rate from the

tissue to the vessel divided by the difference between the

average tissue boundary and vessel wall temperatures.

Eq. (14) is a generalized extension of the conventional

shape factor since it reduces to it [17] for no source term

and uniform boundary temperatures.

Stb
L

¼
Z 2p

0

Rvw

dT
dR

����
R¼Rvw

dh ð14Þ

Second, Eq. (15) defines Stm as the heat transfer rate

from the tissue to the vessel divided by the difference

between the average tissue matrix and vessel wall tem-

peratures,

Stm
L

¼
R 2p
0

Rvw
dT
dR

��
R¼Rvw

dh

Tavg
ð15Þ
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Fig. 2. Stb vs Rvw for Avw ¼ 0:4, Ttb;2 ¼ 1:0, nvw ¼ ntb ¼ 1, and

/vw ¼ /tb ¼ 0. When P ¼ 0 and 10, ttb;1 � tvw;1 ¼ 5:0 �C, and
when P ¼ �7:5, ttb;1 � tvw;1 ¼ �5:0 �C.
2.2. Parametric solutions

To study the effect of the boundary conditions for a

case of biological interest, Eqs. (16) and (17) are used

since Wissler [18] has shown that for two nearby vessels,

the angular variations in vessel wall temperatures are

similar to a cosine function.

FvwðhÞ ¼ 0þ tvw;2
ttb;1 � tvw;1

cosðnvwhþ /vwÞ

¼ 0þ Tvw;2 cosðnvwhþ /vwÞ ð16Þ

FtbðwÞ ¼ 1þ ttb;2
ttb;1 � tvw;1

cosðntbwþ /tbÞ

¼ 1þ Ttb;2 cosðntbwþ /tbÞ ð17Þ

In Eqs. (16) and (17), Tvw;2 and Ttb;2 are negative when
the average vessel wall temperature is higher than the

average tissue boundary temperature, i.e. the vessel

heats the tissue. Boundary condition effects are studied

by: (1) giving different values to the magnitudes of the

fluctuations (tvw;2 and ttb;2); (2) rotating the imposed

temperature fields between 0 and 2p by changing phase

angles (/vw and /tb) and; (3) varying the number of

fluctuation peaks by changing nvw and ntb. The effects of
vessel wall temperature fluctuation magnitude (tvw;2) are
studied for the magnitudes of Tvw;2 ¼ 0, 0.5 and 1, with

the fixed tissue boundary temperature fluctuation value

(Ttb;2) of 1. This simulates actual vessel wall temperature

fluctuations of the magnitudes of ± 0, 2.5 and 5 �C
respectively, for the tissue boundary temperature fluc-

tuation magnitudes of ±5 �C. These conditions corre-

spond to therapeutic applications where the average
vessel wall and the tissue boundary temperatures are 38

and 43 �C respectively [19–22].

The source term P is positive when the average tissue

boundary temperature is higher than the average vessel

wall temperature, and vice versa. The maximum value

for P is chosen as 10 to study a typical thermal therapy

application (i.e., when the difference between the average

tissue matrix temperature and the average vessel wall

temperature reaches approximately twice the difference

between the average tissue boundary and vessel wall

temperatures), and the vessel cools the tissue [19–22].

Similarly, to simulate conditions when the vessel heats

the tissue, the minimum value of P is chosen as )7.5.
Although the effects of boundary conditions and

source term can be modeled separately due to the

problem’s linearity, the effects of both of these variables

are studied together. This is because both are present in

typical therapeutic applications [19–22], and it allows us

to directly compare their effects in a single paper.
3. Results

All results are given in non-dimensional form. Figs. 2

and 3 present the variation in Stb and Stm with vessel

radius as a function of the magnitude of the source term

and the vessel wall temperature fluctuations, for a given

vessel eccentricity. Since vessels of �50–1000 lm are

thermally significant [3,17], the non-dimensional vessel

radius, Rvw is varied from 0.025 to 0.50 using a tissue

matrix radius of �O(1 mm). The eccentricity Avw is

chosen as 0.4 to put part of the perimeter of the (large)

vessel of the size Rvw ¼ 0:5 close to the tissue boundary.

Since nvw and ntb ¼ 1, and /vw and /tb ¼ 0, the maxi-

mum vessel wall and tissue boundary temperatures are

at h ¼ w ¼ 0, and the minima are at h ¼ w ¼ p.
Figs. 4 and 5 present the variation in Stb and Stm with

vessel eccentricity as a function of the magnitude of the

source term and the vessel wall temperature fluctuation,

for a vessel radius of 0.25.
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Fig. 3. Stm vs Rvw for Avw ¼ 0:4, Ttb;2 ¼ 1:0, nvw ¼ ntb ¼ 1, and

/vw ¼ /tb ¼ 0. When P ¼ 0 and 10, ttb;1 � tvw;1 ¼ 5:0 �C, and
when P ¼ �7:5, ttb;1 � tvw;1 ¼ �5:0 �C.

30

20

10

0

S tb

0.60.50.40.30.20.1
Avw

Tvw,2 = 0.0
Tvw,2 = 0.5
Tvw,2 = 1.0

P = 10

P = 0

P = -7.5

Fig. 4. Stb vs Avw for Rvw ¼ 0:25, Ttb;2 ¼ 1:0, nvw ¼ ntb ¼ 1, and

/vw ¼ /tb ¼ 0. When P ¼ 0 and 10, ttb;1 � tvw;1 ¼ 5:0 �C, and
when P ¼ �7:5, ttb;1 � tvw;1 ¼ �5:0 �C.
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Fig. 5. Stm vs Avw for Rvw ¼ 0:25, Ttb;2 ¼ 1:0, nvw ¼ ntb ¼ 1, and

/vw ¼ /tb ¼ 0. When P ¼ 0 and 10, ttb;1 � tvw;1 ¼ 5:0 �C, and
when P ¼ �7:5, ttb;1 � tvw;1 ¼ �5:0 �C.
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Fig. 6. Stb vs /vw ¼ /tb for Avw ¼ 0:05 and 0.70, Rvw ¼ 0:05,

Ttb;2 ¼ 1:0, and nvw ¼ ntb ¼ 1. When P ¼ 0 and 10, ttb;1 � tvw;1 ¼
5:0 �C, and when P ¼ �7:5, ttb;1 � tvw;1 ¼ �5:0 �C. Straight lines
are for Avw ¼ 0:05 and curved lines are for Avw ¼ 0:70.
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Fig. 7. Stb vs /vw ¼ /tb for Avw ¼ 0:05, Rvw ¼ 0:05 and 0.70,

Ttb;2 ¼ 1:0, and nvw ¼ ntb ¼ 1. When P ¼ 0 and 10, ttb;1 � tvw;1 ¼
5:0 �C, and when P ¼ �7:5, ttb;1 � tvw;1 ¼ �5:0 �C. Straight lines
are for Rvw ¼ 0:05 and curved lines are for Rvw ¼ 0:70.
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Fig. 8. Stb vs Rvw for Avw ¼ 0:4, and /vw ¼ /tb ¼ 0. When

nvw ¼ ntb ¼ 0, Tvw;2 ¼ Ttb;2 ¼ 0, and when nvw ¼ ntb > 0, Tvw;2 ¼
0:5, Ttb;2 ¼ 1:0. When P ¼ 0 and 10, ttb;1 � tvw;1 ¼ 5:0 �C, and
when P ¼ �7:5, ttb;1 � tvw;1 ¼ �5:0 �C.
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Fig. 6 presents the effect of the phase angles /tb and

/vw on Stb for a small vessel, at both a small and a large

vessel eccentricity, for three vessel wall temperature

fluctuation and source term magnitudes. Fig. 7 presents

the effect of the phase angles /tb and /vw on Stb at a

small vessel eccentricity for both a small and a large

vessel radius, for the same vessel wall temperature fluc-

tuations and source terms as in Fig. 6. (The comparable
Stm cases are not shown since the results are similar to

those for Stb.)
Fig. 8 presents the variation in Stb vs. vessel radius as

a function of the strength of the source term and the

frequency of the vessel wall temperature fluctuations, for
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Fig. 11. Stm vs Avw for Rvw ¼ 0:25, and /vw ¼ /tb ¼ 0. When

nvw ¼ ntb ¼ 0, Tvw;2 ¼ Ttb;2 ¼ 0, and when nvw ¼ ntb > 0, Tvw;2 ¼
0:5, Ttb;2 ¼ 1:0. When P ¼ 0 and 10, ttb;1 � tvw;1 ¼ 5:0 �C, and
when P ¼ �7:5, ttb;1 � tvw;1 ¼ �5:0 �C.
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a given vessel eccentricity. The Rvw and Avw values are as

in Fig. 2. Results are presented for nvw ¼ ntb ¼ 0, 1, and

2 for cases when the vessel cools the tissue and vice

versa. To keep the average vessel wall and tissue

boundary temperatures the same for all nvw values, the

magnitudes of the vessel wall and tissue boundary tem-

perature fluctuations are set to zero for nvw ¼ ntb ¼ 0

(Figs. 8–11).

To compare the Stb results in Fig. 8 with the com-

parable Stm results, Fig. 9 shows Stm as a function of the

vessel radius for a given vessel eccentricity as a function

of the strength of the source term and the frequency of

the vessel wall temperature fluctuations. The Rvw and the

Avw values are as in Fig. 2. Results are presented for

nvw ¼ ntb ¼ 0 and 1 when the vessel cools the tissue, and

for nvw ¼ ntb ¼ 0, 1, and 2 when the vessel heats the

tissue (Figs. 9 and 11).

Finally, Figs. 10 and 11 present the variation in Stb
and Stm vs. vessel eccentricity for a given vessel radius as

a function of the frequency of the vessel wall tempera-
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Fig. 9. Stm vs Rvw for Avw ¼ 0:4, and /vw ¼ /tb ¼ 0. When

nvw ¼ ntb ¼ 0, Tvw;2 ¼ Ttb;2 ¼ 0, and when nvw ¼ ntb > 0,

Tvw;2 ¼ 0:5, Ttb;2 ¼ 1:0. When P ¼ 0 and 10, ttb;1 � tvw;1 ¼ 5:0 �C,
and when P ¼ �7:5, ttb;1 � tvw;1 ¼ �5:0 �C.
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Fig. 10. Stb vs Avw for Rvw ¼ 0:25, and /vw ¼ /tb ¼ 0. When

nvw ¼ ntb ¼ 0, Tvw;2 ¼ Ttb;2 ¼ 0, and when nvw ¼ ntb > 0, Tvw;2 ¼
0:5, Ttb;2 ¼ 1:0. When P ¼ 0 and 10, ttb;1 � tvw;1 ¼ 5:0 �C, and
when P ¼ �7:5, ttb;1 � tvw;1 ¼ �5:0 �C.
ture fluctuations for three source term strengths. The Rvw

and Avw values are as in Fig. 4.
4. Discussion

First, Figs. 2, 4, 6–8 and 10 show that power depo-

sition affects Stb significantly for all conditions. This

dependency arises since an increase in power increases

the net energy inflow into the vessel––and thus the value

of Stb––while both the vessel wall and the tissue

boundary temperatures are fixed. Thus, the use of con-

ventional shape factors in cases where heating is present

can introduce significant errors.

Conversely, the Stm values are not nearly as affected

by the power magnitude when the vessel cools the tissue

(Figs. 3, 5, 9 and 11). This result is explained since as P
increases, not only does the heat flux into the vessel in-

crease, but so does the average tissue matrix tempera-

ture––and thus the difference between the average tissue

matrix temperature and the (fixed) average vessel wall

temperature also increases. In summary the use of Stm
instead of Stb is recommended when the blood cools the

tissue.

On the other hand, as with Stb, the values of Stm, are
strongly dependent on the power deposition magnitude

when the average vessel wall temperature is higher than

the average tissue boundary temperature (P < 0) (Figs.

3, 5, 9 and 11) for low power magnitudes. This signifi-

cant dependency occurs since an increase in P increases

both the heat flux into the vessel and the average tissue

matrix temperature. This temperature then approaches

the (fixed) average vessel wall temperature and their

difference decreases, eventually reaching a singular

point. Further increases in the magnitude of P increase

both the inflow of energy to the vessel and the magni-

tude of the average tissue matrix temperature, and thus

also their difference. Therefore, the Stm curves for large,

negative P values will be close together and closer to the
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curves for P > 0 (not shown in Figs. 3, 5, 9 and 11) [13].

In summary, since both shape factors are dependent on

both the applied power and the tissue temperature dis-

tribution (which is itself dependent on the applied

power), iterative procedures are needed to solve for the

3-D tissue temperature field if either Stm or Stb is used to

estimate the tissue–vessel heat transfer rates.

Second, Figs. 2–7 show that the effect of the vessel

wall temperature fluctuation magnitude on the GPCSFs

is significant only at large vessel radii/eccentricities. This

occurs since for zero eccentricity, as the magnitude of the

fluctuations increases everywhere (both +/)), any de-

crease in the heat flux from one part of the vessel is

compensated for by an increase from another. However,

as the vessel eccentricity increases, part of the vessel’s

perimeter comes closer to the tissue boundary when

compared to the rest of the perimeter. Thus, for all other

factors equal, this closer part becomes thermally more

significant since the various parts of the vessel perimeter

act as parallel resistances. Therefore for an eccentric

vessel, as the fluctuation magnitude increases, an increase

in the heat flux inflow to the vessel from one part of the

vessel will not compensate the decrease in the heat flux

elsewhere; i.e., the net increase/decrease in the inflow of

the heat flux is determined more significantly by that part

of the vessel closest to the tissue boundary (the ‘‘short

circuit’’ effect). In particular for Figs. 2–5, the phase

angles (/vw and /tb) are zero, nvw ¼ ntb ¼ 1 and the vessel

eccentricity Avw is positive, so an increase in the magni-

tude of the vessel wall fluctuation results in a net decrease

in inflow of energy to the vessel from the tissue. This

effect is more pronounced at high eccentricities and high

vessel radii. The opposite curvatures of the P > 0 and

P < 0 results arise when positive eccentricities are pres-

ent, since when the vessel wall temperature is lower than

the tissue boundary temperature (P > 0), an increase in

the magnitude of the fluctuation in the average vessel

wall temperature decreases the value of the GPCSFs and

vice versa. In summary, the effect of the vessel wall

fluctuation is present for all finite eccentricities, but is

only significant at large eccentricities and radii.

Third, the GPCSFs are more sensitive to the vessel

radius than to the eccentricity for all conditions (Figs. 2–

11) since an increase in the vessel radius brings the whole

vessel perimeter closer to the tissue boundary compared

to an increase in the vessel eccentricity, which moves

part of the perimeter closer to the tissue and the rest

further away. This emphasizes the importance of

knowing vessel radii compared to eccentricities.

Fourth, an increase in the frequency of the vessel wall

temperature fluctuations affects Stm (Figs. 9 and 11)

more than Stb (Figs. 8 and 10). For the case of the vessel

cooling the tissue (P > 0), when the value of nvw ¼ ntb
goes from 0 to 1, the local temperature difference be-

tween the vessel wall and tissue boundary increases in

the ‘‘short circuit’’ part of the vessel perimeter and de-
creases in the rest of the vessel perimeter, thereby

increasing the net tissue–vessel heat transfer rate and

therefore the Stb. The increased effect on Stm arises since

not only does the heat transfer rate increase as per the

above ‘‘short circuit’’ argument, but on the opposite side

of the vessel the overall local vessel wall and tissue

boundary temperatures decrease, thereby decreasing the

average tissue matrix temperature and thus increasing

the Stm more significantly than for Stb. The opposite

results for the case when the vessel heats the tissue can

be explained similarly. As the values of nvw ¼ ntb in-

crease to large values, the peaks and the troughs of the

temperature fluctuations come closer together, thus

increasing the heat transfer rates in the angular direc-

tion––and thereby canceling out each other’s effects on

both the tissue–vessel heat transfer rate and on the

overall tissue temperature distribution. In the high fre-

quency limit the shape factors approach those for the

average tissue matrix temperature with no fluctuations

on the vessel wall and tissue boundary (nvw ¼ ntb ¼ 0).

This explains why curves for the GPCSFs for

nvw ¼ ntb > 1 are bounded by the curves for nvw ¼ ntb
equal to 0 and 1 (Figs. 8–11).

An implication of these results is that it is important

to model the frequency of the fluctuations in order to

accurately model in vivo tissue–vessel heat transfer rates,

and thus to accurately predict the in vivo temperature

distributions. This, in a sense, is not an encouraging

result, since it is very hard to estimate the frequency of

the fluctuations on each of the vessel walls present in in

vivo tissue where the temperature distribution, itself, is

unknown. Fortunately, however, since all of the curves

for GPCSFs for nvw ¼ ntb > 1 are bounded by the curves

for nvw ¼ ntb equal to 0 and 1, we can determine error

estimates in calculating the GPCSFs and thus the tissue–

vessel heat transfer rates.

Fifth, the effect of the phase angles /vw and /tb on the

GPCSFs is significant for large radii and eccentricities

(Figs. 6 and 7). This dependency can be explained since

at high vessel radii and eccentricities, changes in the

local temperature difference between the vessel wall and

tissue boundary significantly affect the tissue–vessel heat

transfer rate as well as the average tissue matrix tem-

perature (refer to explanation above). This emphasizes

the need to accurately model phase angles at high vessel

radii and eccentricities to accurately estimate the tissue–

vessel heat transfer rate and thus the tissue temperature

distribution, which are seldom known. However, like the

previous results, since it has been found that the

GPCSFs are maximal when the difference in local vessel

wall and tissue boundary temperatures in the thermally

significant part of the vessel is a maximum and vice

versa, error bounds can be estimated.

Sixth, using Figs. 2–11 it can be shown that the

conductive resistance dominates or is equal to the con-

vective resistance [1,23] for the power levels in the
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present study. This motivates the extension of the pres-

ent derivation to include multiple vessels [13].
5. Conclusions

New expressions for conduction shape factors have

been derived that include the effects of uniform power

deposition and variable temperature boundary condi-

tions. Results show that when the average temperature

of the vessel wall is lower than the average temperature

of the tissue boundary, the GPCSFs based on the

average tissue matrix temperature (Stm) are much less

sensitive to the strength of the source term compared to

the GPCSFs based on the average tissue boundary

temperature (Stb). This result suggests that the use of Stm
instead of Stb will introduce less error in the estimation

of tissue–vessel heat transfer rates when sources are

present. Finally, the effects of the variable vessel wall

and tissue boundary temperatures are found to be sig-

nificant at large vessel sizes and eccentricities, with vessel

size having a larger effect than vessel eccentricity.
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